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Abstract: We present RoboPlan, a large-scale multimodal and cross-embodiment1

dataset and benchmark for long-horizon planning. We use scalable ways for ac-2

quiring real-world data and language labels with high throughput and high diver-3

sity: crowd-sourcing tasks from users and operators, collecting long continuous4

episodes, using crowd-sourced labeling and automatically generating tasks from5

it, using human embodiment data along with robotic embodiment data. We ana-6

lyze the effects of mixing cross-embodiment data as well as multi-task data and7

find that it generally increases performance, broadens capabilities and increases8

collection throughput. Examples in RoboPlan are formatted as video-text pairs,9

where videos of robot or human actions are annotated with texts of multi-turn vi-10

sual question answering (VQA), detailing the intermediate thoughts and actions11

required to achieve the session goals. This dataset covers a total of 300 hours12

of videos, over 1 million conversations and 100k instructions. We then define a13

novel benchmark based on this dataset, using an intervention rate metric to assess14

a robot’s level of autonomy in accomplishing predefined goals without human in-15

terference. We validate our approach by running several state-of-the-art visual16

language models (VLM) over the dataset, and demonstrate the feasibility of long-17

horizon planning in the real-world with low intervention rate. Moreover, we find18

that video language models in general work better than image language models,19

indicating the necessity of modeling visual temporal dynamics in long-horizon20

planning tasks. Finally, our results corroborate our assumption that models trained21

on human data can effectively transfer to robot setup, revealing the potential of22

our approach in facilitating large-scale, cost-effective training for robot planning23

problems. We commit to releasing the data at a later date.24

Keywords: Long-horizon planning, Benchmark, Multimodality25

1 Introduction26

Long-horizon planning is a challenging task for robotics, as it requires agents to reason on how to27

accomplish high level objectives, and predict and plan accordingly. However, there are few videotext28

datasets or benchmarks designed specifically for robotic long-horizon planning. To address this29

problem, we introduce RoboPlan, a large-scale multimodal dataset and benchmark for long-horizon30

planning on robots. RoboPlan has several important features which we believe can make it a valuable31

contribution to the research community.32

First, the RoboPlan dataset is formulated as aligned video-language pairs. Given a full episode of a33

robot completing a high-level goal, the episode is decomposed into a multi-turn conversation, with34

each turn consisting of a human asking the robot a question about its planning, affordances, and35

actions on a smaller task. Each question is paired with a first-person video view of the environment,36

and the changes that the robot is making within it. This framework enforces the robot to make37

its decisions grounded on its visual input, as well as introduce a structured reasoning process that38

allows for transparency and interpretability in its trajectory. To the best of our knowledge, this is a39

novel format for a robotics dataset.40
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Second, RoboPlan is cross-embodiment, and is collected as a mixture of robot and human ses-41

sions. Given the same high-level objective, RoboPlan includes data of humans completing the same42

objective. This was motivated by the cost of robot data collection; human data is much cheaper43

and faster to collect by comparison, making it much more feasible for large-scale data preparation.44

Moreover, we hypothesize that given the same data collection budget, models can obtain similar or45

better planning abilities when trained on a combination of robot and human data, as demonstrated46

in Section 3.3.47

Finally, to ensure that we faithfully measure the generalization ability of planning models, the Robo-48

Plan dataset contains a diverse variety of tasks. These tasks are collected with a bottom-up strategy in49

which the tasks are crowd-sourced by users and tele-operators. Data collection occurred across mul-50

tiple buildings and environments, totaling 1.9k unique long-horizon tasks and 29k medium-horizon51

tasks. The richness of the tasks makes RoboPlan a diverse testbed for improving and evaluating52

model generalization ability.53

The associated RoboPlan benchmark provides the ability to evaluate the level of autonomy of a54

robot in accomplishing tasks without human interference. We validate our dataset and benchmark55

by testing multiple state-of-the-art visual language models (VLM) on our benchmark. Due to the56

importance of multimodal understanding for successful planning and task completion for robots, we57

experiment with both image-language and video-language understanding models. Our results show58

that in the offline evaluation setting, VLMs are able to achieve a relatively low (i.e. good) inter-59

vention rate, but the rate increases significantly in the online setting. Moreover, we observe better60

quality yielded by video-language models than image-language models, indicating that modeling61

long-term temporal dynamics of visual inputs is essential to the improvement of planning accu-62

racy. Our results also support our hypothesis that models trained on the hybrid of robot and human63

data transfers effectively to increasing generalization performance for the robot tasks, justifying our64

cross-embodiment approach in data collection.65

Our contributions can be summarized as follows:66

1. We propose RoboPlan, a large-scale multimodal cross-embodied benchmark for training67

and evaluating robotic long-horizon planning.68

2. We demonstrate the feasibility of achieving low intervention rate using state-of-the-art69

VLMs, and argue for the importance of video sequence modeling and multi-task training70

for the improvement of planning accuracy.71

3. We show that the cross-embodiment data collection procedure can facilitate large-scale72

robotics model training, due to the effective transfer learning between human and robot73

operation data.74

2 The RoboPlan Benchmark75

Fig. 1 shows an episode from the RoboPlan benchmark. Each episode is decomposed into a sequence76

of tasks, each consisting of a text question and a video segment. The following eight tasks are77

defined:78

1. Planning Given the high-level goal, determine the immediate next step required to accomplish it,79

or all steps required to accomplish to goal. For example, current goal is: Please get a80

water bottle and put it on Tomas’s desk. Q: immediate next step? A: Open81

the fridge82

2. Planning with Context An extension of Planning that includes contextual information of the83

steps that have already occurred. Example: current goal is: Please get a water bottle84

and put it on Tomas’s desk. steps so far: 1- Open the fridge 2- Put water85

bottle on the table Q: immediate next step? A: Close the fridge86

3. Planning Remaining Steps A further extension of Planning with Context that requires the robot87

to answer with all steps remaining until the goal is completed. current goal is: Please88

get a water bottle and put it on Tomas’s desk. steps so far: 1- Open the89

fridge 2- Put water bottle on the table Q: immediate next step? A: 3- Close90

the fridge 4- Bring water bottle to Tomas’s desk ...91

4. Discriminative Affordance Given a step, ask whether this is possible with yes or no. Example: put92

the apple on the counter Q: possible right now? A: yes93

5. Generative Affordance Ask for a step that can be taken at the current time. Example: Q: what94

action is possible right now? A: stack the glasses95
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6. Success Given a step, ask if it has been executed successfully. Example: pick up the pen Q:96

satisfied? A: no97

7. Future Prediction Ask for a likely future step. Example: Q: what is likely to happen next?98

A: put the orange in the bowl99

8. Past Prediction Ask for the step that has just occurred. Q: what just happened? A: Put the100

memory card packet on the stack of memory card packet101

The first task of an episode is Planning Remaining Steps, asking the robot to formulate a long-horizon plan to102

execute to accomplish the goal. As the robot executes each step of this plan, it is prompted with multiple tasks103

to determine Affordance (what actions are possible), Success (which actions have succeeded), and Prediction104

(which actions need to be done afterwards).105

Intervention Since the high-level goal is decomposed into a sequence of tasks, there is a consistent and reg-106

ularized framework for determining whether or not the robot is proceeding towards the goal correctly. These107

questions can be viewed as an interactive conversation between a questioning human and an answering robot.108

In particular, the RoboPlan benchmark allows for human intervention within the robot’s trajectory — for ex-109

ample, if the robot responds incorrectly to a particular task, a human can intervene to overwrite its prediction110

with the correct answer, allowing it to continue the execution of subsequent tasks.111

Chain-of-Thought in Natural Language Decomposing high-level goals into the defined tasks allows for112

robots to manifest its thinking process when carrying out long-horizon plans. Moreover, these tasks are pro-113

vided as natural language questions and answers, and can be viewed as a series of Visual Question Answering114

(VQA) steps. This formulation is similar to chain-of-thought for language model prompting [1]. We also115

note concurrent work [2] which demonstrates that mimicking step-by-step human thought improves planning116

accuracy.117

2.1 Dataset118

As part of the benchmark, we collect and publish the RoboPlan dataset with both training and evaluation splits.119

As shown in Fig. 1, we first asked human users to provide a list of common tasks that they would like to120

see a robot butler perform for them in office or kitchen environments. We then record first-person videos121

executing these tasks in two different embodiments: (1) using a tele-operated robot with a single arm, and (2)122

with a human using a single arm, and holding a camera in their other hand. After videos were collected, we123

crowdsourced hindsight relabels for video segments, in which workers answered several questions on planning,124

success, future prediction, etc. From this data, the tasks described in Section 2 are generated automatically125

with heuristics, for example the future prediction task can be constructed by first extracting the video before126

a segment, then combining the question ”what is likely to happen next?” with the instruction found in the127

segment. All tasks are constructed using different videos before, during or after a segment.128

Task length We focus on tasks that require long-horizon planning. Therefore the collected long-horizon129

episodes last on average 1 minute and 42 seconds. The medium-horizon tasks segments labeled in hindsight130

last on average 13 seconds.131

Task diversity To ensure that our dataset and benchmark do not overfit to a specific environment, domain or132

task, we collect examples over a wide range of tasks from a robotics perspective. Unlike existing robotics133

works [3] where a fixed and small list of tasks is decided in advance by researchers and engineers in a top-134

down fashion, we opt for a bottom-up approach where a large number of tasks are crowd-sourced by users135

and tele-operators. This favors breadth and a better alignment with a distribution of requests coming from real136

users. The sessions were across 3 office buildings, covering 1,939 unique long-horizon tasks and 29,367 unique137

medium-horizon tasks.138

Dataset Statistics The dataset contains 312.6 hours of videos or 13 days, collected across 3 office buildings.139

These videos correspond to 2859 robot embodiment episodes and 2672 human embodiment episodes. There140

is a total of 5531 long horizon instructions with an average execution length of 102 seconds with 1939 unique141

values among them. The dataset also has 111,046 medium horizon instructions, with an average execution time142

of 13 seconds with 29,367 unique samples among them. From these instructions, we construct a visual question-143

answering (VQA) dataset of 1+ million (video, VQA conversation) pairs. Because evaluation of freeform text144

answers are performed by humans, we keep the validation and test sets small on purpose with approximately145

1,000 VQA entries for each (coming from 50 episodes each). While there can be overlap in scenes between146

training and val/test, there is no overlap in episodes.147

3 Experiments148

3.1 Visual Language Models and Planning Method Baselines149

To accomplish the long-horizon planning tasks, robots need to be controlled by strong VLMs for visual under-150

standing and linguistic reasoning. We therefore consider the following state-of-the-art VLMs as our baseline151

models for experiment.152
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Figure 1: Data collection, instructions labeling and tasks generation.

VideoCoCa [4] is a video language model extending CoCa [5]. It uses an encoder-decoder architecture com-153

bining contrastive pretraining (like CLIP [6]) as well as generative pretraining (like SimVLM [7]) between154

video and text modalities. Unless otherwise stated, we use a VideoCoCa base model of 383M parameters with155

the initial checkpoint trained on image-captioning tasks as the original paper did, and fine-tune the model on156

RoboPlan video-text datasets.157

PaLM-E [8] is a visual language model built from pretrained ViT [9] and PaLM [10] LLM models, which158

projects images into the token embedding space of the pretrained LLM. We use the PaLM-E-562B model,159

trained only on single-image examples, despite testing it in 2-image tasks. In our experiments we test PaLM-E-160

562B zero-shot, without training on RoboPlan dataset. This establishes baseline performance for a SoTA visual161

language model tested on the dataset without training.162

Planning Methods. We experiment with four baseline planning methods: two of which use VideoCoCa and163

PaLM-E (zero-shot), as end-to-end planning models. As two other baselines, we adapt the methods of Say-164

Can [3] and Grounded Decoding [11], which use a text-only LLM (for which we use PaLM [10]) in either165

phrase-level or token-level decoding guided by a visual affordance function. In these experiments for SayCan166

and Grounded Decoding, we provide a VideoCoCa model trained to perform affordances as a strong visual167

affordance function.168

Baseline Results for the methods from Sec. 3.1 are shown in Tab. 1. The VideoCoca model trained on the169

RoboPlan dataset demonstrates an intervention rate much lower than the other methods tested. In particular,170

the SayCan and Grounded Decoding methods, although they use VideoCoca for te affordance function, have171

particularly high rates of interventions, suggesting the advantage of performing end-to-end planning. The172

PaLM-E method is only tested in the zero-shot setting, not trained on RoboPlan, and so accordingly does not173

perform as well as the finetuned method, but establishes a strong zero-shot baseline for future work.174

3.2 Evaluation Method175

We first evaluate the model performance on individual tasks, where each task consists of a video segment and176

a question. The inference result is compared using exact match against prior human evaluation results stored177

in a central database as correct/incorrect for the video-question pair. The inference results for which no match178

is found are then collected for human raters to evaluate. During evaluation, a human rater is presented with179

the exact video segment and question as presented to the model. The rater is asked to either mark the model-180

generated answer as correct or incorrect, in which case the rater can propose a correct answer. All answers are181

added to the database, with the correctness of each answer marked accordingly.182

3.3 Comparing Embodiment Mixtures183

Robot collection throughput will often be a factor of the cost including time, money, tele-operator training and184

availability, hardware maintenance etc., while humans are already expert of their own embodiment, collecting185

data with much less cost and cycle than robots. When factoring in all of these parameters into a collection186
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Planning Model Visual # calls to VLM Inference Model Intervention
Affordance Function for 30k instr. Time∗ Size Rate

SayCan VideoCoca (F-t) 30k >20s per step 540B 95.8%
Grounded Decoding VideoCoca (F-t) 10 † 540B 97.6%
PaLM-E (Zero-Shot) – 1 ∼30s 562B 57.9%

VideoCoca (Fine-tuned) – 1 ∼1s 383M 28.8%

Table 1: Comparison of baseline methods for the RoboPlan benchmark tasks. † Grounded decoding inference
time depends on beam size. ∗ Inference time depends on inference compute – we note the models as used.

Figure 2: Examples of 3 embodiments in the dataset: robot, human (single) arm, human using a grasping tool.

budget, we can see that robot-to-human collection cost ratios and throughputs can vary wildly depending on all187

of these parameters. It is hence a critical question while scaling up data collection to know which data mixture188

for a given budget leads to the lowest error rates.189

We explore this question in Figure 3 by looking at the data yields for a fixed collection budget of 500,000190

VQA conversations, and report the performance for different configurations in Figure 3-b to analyze the trade-191

offs between different mixtures. We find that even if the robot-human ratio is 1.0 and only evaluating on the192

robot test set, the error rate is comparable when training on the equal robot250k-human250k mixture (62.4%)193

compared to the full 500k robot dataset (62.7%), while also being significantly lower on the human test set194

(53.9% vs 67.0%). Not only there is no downside for the robot performance to mix human data, it also makes195

the model more general and usable for other applications that require human embodiment understanding.196

Similarly we find that when the robot-human cost ratio is 4.0, the performance of the mixed dataset (robot-197

62k + human-250k) on the robot test set is similar to the robot-only 125k dataset (65.3% vs 63.5%) while198

also being significantly lower on the human test set (51.1% vs 68.7%). We also observe that the performance199

gains seem rather small when training on 500k robot samples vs 125k, and that performance on human data200

degrades slightly when increasing robot data from 62k to 250k. We conclude that this analysis validates the201

common intuition that human data collection is an efficient way to scale up data collection for robots, despite202

the embodiment differences.203

3.4 Tasks Transfer via Cross-Embodiment Data204

In Fig. 4, we compare error rates on the test split using VideoCoCa-RoboPlan trained on robot embodiment205

only, human embodiment only, and their combination. The test set contains only robot embodiment data.206

Despite cross-embodiment, we find that errors are below 100% for all tasks when training on human data only,207

indicating human data by itself is useful to acquire a grounded understanding of videos with robot embodiment.208

Furthermore, training on both embodiments performs better than training on robot data only, indicating that209

extra data with human embodiment does not hurt performance when evaluating on the robot embodiment. We210

use [3] as a baseline, which uses a small, fixed list of 60 tasks and can only be evaluated on the planning task.211

We also provide the affordance answers from RoboPlan as affordance function to SayCan for planning.212

Similarly, we evaluate on the joint human and robot test split in 7.1 Fig. 6. While it is not surprising that training213

on both embodiments performs best on the robot+human test set, we also shows it is the most general model214

as it performs better in all situations. We also explore in Fig. 7 the effect of training on multiple tasks versus215

training specialized models on reduced sets of tasks. We find that the model trained on all tasks is often better216

of comparable than the models dedicated to a subset of tasks, with the exception of the success task.217

3.5 End-to-end Long-horizon Inference Evaluation218

In Fig. 5, we present the answers of our model trained on both robot and human embodiment data for a full219

episode when queried for the immediate next step given a long-horizon instruction. We use the temporal220

segments provided in hindsight by human annotators on an existing test episode. For each segment, we retrieve221

a short video right before the segment starts and ask the model what should be done next using the following222
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robot cost = 1x human cost

(a)

(b)

Reference budget for 
other mixtures on the right

robot cost = 2x human cost robot cost = 4x human cost

125k 62k + 250k500k 250k + 250k

robot cost = 8x human cost

Figure 3: Possible embodiment mixtures for a fixed collection budget. This graph illustrates the possible
trade-offs in total amounts of VQA samples collected for a fixed collecting budget and depending on the col-
lection cost ratios between robot and human embodiments. In (a) we simulate different cost ratios by reducing
the dataset size of the robot-embodiment dataset while keeping an equal budget for each embodiment. We
calibrate this graph with a reference fixed budget that can produce approximately 500,000 VQA conversations
at human collection cost. In (b) we report the error rates of each mixture (average error rate over all tasks). We
find that mixing embodiments is overall beneficial even when the collection costs are the same and even when
evaluating on the robot embodiment data only.

prompt: ”current goal is: [long-horizon instruction] Q: immediate next step? A: ”. We then submit each answer223

for human review and infer the intervention rate given how many steps had incorrect answers. We present more224

qualitative runs in Section 7.2.225

3.6 Observations226

From the experimental results above, we make the following observations:227

Feasibility of low-intervention rate The intervention rate depends critically on the performance of VLMs.228

Using a strong VLM, it is possible for the robot to do long-horizon planning with relatively low intervention229

rate. This indicates that the contemporary multimodal models are strong enough to help robots understand230

visual scenes and reason over the action steps in controlled environments, and it is critical to build stronger231

VLMs to achieve higher levels of robotic autonomy.232

Importance of multi-task training Multitask training has been demonstrated to be effective in facilitating233

transfer learning, improving models’ generalization ability and versatility []. Similar observations hold in our234

experiments. We find in Fig. 7 that the model trained on all tasks is often better of comparable than the models235

dedicated to a subset of tasks, with the exception of the success task. However the performance difference is236

small, and a robotics setup benefits more largely from broad and general answering capabilities.237

Importance of video modeling In order to perform tasks accurately, visual grounding over time horizon is238

important. We verify this assumption by comparing VideoCoCa trained with different number of frames (1,239

2, 4, 8, 16). The results are presented in Table 13 in Appendix 7.5. As expected, modeling with more frames240

yields better results, as it captures longer temporal dynamics for more accurate visual grounding.241

4 Related Work242

Vision-Language Models. Recently many methods [6, 12, 13, 5, 7, 14, 9] have been proposed that aim to train243

vision-language models (VLMs) on large-scale image-text pair datasets. We find the features learned by these244

methods generalize to robotic datasets. In this work, we also fine-tune a pre-trained vision language model245

called VideoCoCa [4] on conversation data grounded in long-horizon videos. The advantage of this VLM is246
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Figure 4: Error rates on robot-only test set, comparing models trained on robot only, human only or both
embodiments. We observed that while it is not trained on robot data, the model trained on human data still
performs with less than 100% error. We also find that the cross-embodiment training is beneficial even when
evaluated on robot data only.

that it is the encoder can consume full videos which helps in fine-grained temporal reasoning required to solve247

the tasks introduced in the RoboPlan benchmark.248

Video Captioning. Our task is closely related to the task of video captioning [15, 16, 17, 18, 19] which is a well249

studied problem in computer vision. In fact, we fine-tune a pre-trained video-captioning model VideoCoCa on250

these long-horizon videos. Different from the video captioning problem, all the videos in our fine-tuning dataset251

are egocentric. Also, we collect segment labels for a long-horizon task executed by either a robot or human.252

Furthermore, we augment these segments with a variety of question-answer pairs that add more supervision to253

the model so that an agent can execute long-horizon tasks.254

Video Datasets with Text Annotations. Recently many large-scale video datasets have been intro-255

duced [20, 21, 22, 23, 24, 25, 26, 27] that include videos of humans performing tasks with text narrations256

or question-answer annotations. Ego4D is the most similar dataset to the RoboPlan dataset because Ego4D257

also has egocentric view of daily human activities annotated with dense narrations. However, our dataset dif-258

fers in two key aspects. First, we collect human and robot interactions in the same environment. Second, our259

focus is on tasks that a robot is capable of doing. We hope that by lowering the domain gap between the human260

and robot videos we can achieve more transfer from human videos (which are faster to collect) to robot videos.261

Like RoboPlan, TEACh[28] is another dataset that also contains interactive dialogues required to solve house-262

hold tasks. However, TEACh consists of data in simulated environments while our dataset is collected in real263

kitchen and office environments with both humans and robots.264

Language Models for Planning. [29] used a large language model (LLM) to produce plans for robotic tasks.265

This has been followed up by many works that also use LLMs to produce feasible next steps for a robot [3, 8,266

30, 31, 32]. One advantage of using LLMs to plan is that the output of these models can be used as input to267

language-conditioned policies [33, 34, 35] that may have been trained independently.268

Intervention Rate. Intervention Rate is a commonly used evaluation metric [36, 37, 38] in robotics and self-269

driving car literature for measuring the performance of policies. In this work, we use it as a metric for evaluating270

video question answering performance when a model is deployed in unseen test environments. Since, robots271

encounter new scenes and objects as they explore new scenes, we find intervention metric to be a better indicator272

of the capabilities of the model rather than a metric calculated on an offline dataset.273

Chain of Thought Prompting. [39, 40, 1] use the idea of prompting a language model with the process or274

steps to perform a reasoning task. The authors observe that prompting allows the model to improve performance275

on symbolic reasoning tasks like algebraic problems. Inspired by those results, we also provide rationale or276

thought supervision to the model by providing the sub-tasks as hindsight labels for successfully achieving the277

long-horizon task.278

5 Limitations279

While we successfully collected a larger number of video-text examples over a wide range of tasks, our ap-280

proach is limited in the following ways. First, all tasks were accomplished in unimanual manner. To further281
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drawer
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drawer
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drawer
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drawer
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Intervention rate: 100.0%
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drawer
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drawer

open drawer
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drawer

open drawer

correction: put a cup in the 
drawer

open drawer

correction: put a cup in the 
drawer

Figure 5: Full episodes runs with Intervention given a long-horizon instruction and an existing video. We
show the human labels on the left in blue, correct answer green and incorrect in red. For each picture (we show
pictures here for simplicity but the model is fed the last few seconds before this picture as input), we give the
long-horizon in a prompt and ask what the immediate next step should be. The human evaluator rates each
answer and provides correction if needed. We report the rate of intervention at the end of the run.

expand the variety of tasks, we will consider introducing bimanual operations in future work. Secondly, the282

ways robots and humans perform tasks may differ, potentially impeding transfer learning between human and283

robot data. Thirdly, human intervention and oversight of robot task execution is time consuming, making this284

evaluation procedure difficult to be deployed at large scale. Lastly, we have not compared the effectiveness285

of the proposed human-and-robot dataset/benchmark with human-only dataset/benchmarks like Ego4D [27],286

EpicKitchens [41] etc., which merit careful study in our future work.287

We also acknowledge that in this work, we did not conduct evaluations on a combined planning and mobile-288

manipulation setting. Rather, we opted to focus on high-level planning only. This is well motivated as de-289

coupling planning and manipulation allows us to study the full breadth of possible tasks. We will explore290

combining high level with low-level policies in future works.291

6 Conclusion292

In conclusion, we hope that this dataset will serve as a benchmark for the robotics community working on293

solving grounded multimodal reasoning in complex real world settings. We also hope that cross embodiment294

transfer from human and robot data will usher in a greater possibility of accelerating robot learning by use of295

larger human task execution datasets. We show that video sequence models and multi task training improve296

planning performance over comparable methods.297
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